当前位置 主页 > 伙伴云表格 >

云上数据中台才是未来

2021-07-21 22:56   编辑:admin   人气: 次   评论(

  www.behd.com.cn这5款车常年打折促销最高优惠10万赶紧记下来过去两年,数据中台的概念在中国遍地开花,这个源自于阿里巴巴数据实践的名词,借助数字化转型的东风迅速成为了企业CTO谈论的中心,迅速发展成为一个至少千亿级别的赛道。2019年,也被称为数据中台元年。

  为什么阿里巴巴能成为现在普遍认同的技术领先公司,持续推进数据的大规模运用是其中最重要的因素之一,这套数据方法论最终沉淀下来成为了今天我们所认知的数据中台。

  数据中台之所以区别于此前的大数据平台和数据湖,来源于其融合了两大属性:技术属性和业务属性。如果说过去所有的IT解决方案强调的是「IT工具适配业务需求」,那么数据中台所强调的就是「使用数据解决业务问题」,两者的本质区别在于,传统IT解决方案更强调IT成本的降低,而数据中台则更强调使用数据创造利润。

  利润可能来自于成本降低,也可能来自于收入增加,或者是来自于数据驱动的业务创新,全看企业需要解决的是什么业务问题,IT成本的降低本身也是数据中台的题中应有之义。

  换句话说,要看明白数据中台的未来发展,就必须要从业务开始理解利润,把数据中台当成一个业务概念来理解。

  纵观历史,分层和模块化是工业革命以来复杂业务系统得以发展的关键。哪怕是在技术领域,分层优化也是计算机系统的核心思想,统领了过去几十年的发展史。

  从这段历史我们可以看到,今天的企业技术市场,乃至包括企业的组织结构等等,大部分都奠定于第三个时期(信息时代),根据分层和模块化的方式来进行组织。

  举例来说,汽车企业的组织形态,就有非常浓厚的第三时期特征。首先,人事、财务和IT构成了企业后台,统一向前提供服务;其次,业务前台围绕车的规划、研发、采购、制造、市销分成4-5个主要的业务事业部,事业部内部横向开展流程化和模块化工作;最后,每个业务模块的外部服务市场,也是根据流程和模块来分布,比如在营销领域,围绕市场调研、品牌咨询、媒体购买、口碑监测等等形成了模块化的市场生态,每个模块内部多家供应商形成横向竞争。

  横向竞争的意思是,在模块和分层内部寻求产品和服务的替代者,比如IntelAMD在PC芯片领域就是横向竞争,横向竞争是第三时期企业服务市场的主要特征。

  横向竞争也是企业横向优化的必然结果,企业在管理咨询专家的协助下,优化企业的内部流程和模块,同时每个模块分别向外进行招投标,从一众横向竞争者中优选适配的企业服务。

  如果我们把阿里巴巴、腾讯、美团乃至谷歌、亚马逊的服务版图拉开,我们会发现,每个横向竞争的领域里面几乎都有平台的身影,哪怕不是他们自己的服务,也有他们投资的公司在提供服务。企业在寻求业务服务的时候,哪怕仅仅是在一个细分的模块,也必须考虑到背后涉及的平台,而不能仅仅像第三时期一样,把业务预算切分成不同的蛋糕,让横向竞争者来竞标。

  究其原因,平台打破了传统价值链分层竞争的模式,统一顾客(用户和客户)视角,围绕顾客价值链进行了纵向的优化,相比较传统企业只有营销和销售部门面向顾客,平台的每一个部门都在面向顾客,甚至是后台的IT、财务和人事部门,都需要围绕提升顾客体验来贡献价值。

  于是,企业服务市场的竞争态势就从价值链分割的横向竞争转向了价值链整合的纵向竞争。「纵向竞争发生在一个渠道或者价值链之上,渠道的每个阶段或者价值链中的参与者,都从为消费者提供的最终产品和服务所产生的收入蛋糕中切分到一块利益。」说这句话的是Scott Brinke,他是《营销的科学与艺术》的作者,2016年底他在评论MarTech市场的时候,第一次总结了「纵向竞争」的现象。

  他发现,随着营销日益被平台和数据白盒化,营销领域的横向竞争日渐变成了围绕价值链上下游展开的纵向竞争:过去奥美的竞争者是阳狮,但是今天上游的埃森哲下场纵向收购,成为了这些4A公司最大的竞争对手;过去品牌的营销策略由4A公司和品牌共同商定,今天两方却都需要将brief交给平台来审核,甚至平台自己下场来为品牌量身定制策略,4A公司沦为执行方(参考天猫超级品牌日)。

  这种现象也不仅仅出现在营销领域,也不仅仅出现在企业外部的服务市场,苹果和特斯拉就是两个在企业内部开展「纵向优化」的代表。

  苹果最新的M1芯片,各项性能超越原本的Intel芯片数倍以上,把原本数小时的视频压缩时间生生缩短了70%-80%。完整的「软硬一体」的生态体系和供应链,让苹果有能力不断投入新技术研发,并把技术优势进一步转化成利润。M1就是苹果「纵向优化」的产物,作为一颗SoC,其架构不同于Intel为代表的通用CPU,完全服务于苹果的封闭生态,却带来了体验的超越进步,把Intel的「牙膏」彻底挤没了。

  为了提升Model 3的生产效率,马斯克召开了一个 12 人的顶级工程师会议,开启了特斯拉的生产自动化、智能化进程,从研发车床开始重构了冲压、焊接、涂装、装配四大工序,构建了和苹果类似的完整软硬件生态链条,改变了传统供应链高度依赖博世和大陆的分布式架构,采用了全新的中央集成式架构来「纵向优化」汽车制造。

  相比较横向竞争,「纵向竞争者争夺的对象,是相对其他竞争者能从总体的收益中获得多少份额。」Scott说,「从客户或消费者的视角出发……离最终客户越近、中间的层级越少、跟客户直接交互的触点越多,公司就越有竞争力。」

  京东的「十节甘蔗」理论某种程度上验证了Scott的说法。刘强东把面向消费者的价值链条分成创意、设计、研发、制造、定价、营销、交易、仓储、配送、售后等十个环节,其中前5个归品牌商,后5个归零售商,围绕后5个环节的价值链,京东着力打造了其中的仓储配送能力,通过纵向「吃掉更多的甘蔗节数」成为中国电商的另一个代表平台。

  综合而言,以平台为比较对象,未来企业的数字化转型所面临的最大挑战,不是每个模块内部的横向分别优化,而且围绕价值链展开的纵向全局优化,最大难题在于:

  1. 业务上:如何统一顾客视角,把高度横向分化的价值模块整合成「以顾客为中心」的纵向价值链条,打造端到端的顾客服务体系(End to End);

  2. 数据上:如何统一开展数据治理,把分散的孤岛数据转变成可信的数据资产,形成全局数据支撑「以顾客为中心」的端到端服务体系;

  3. 组织上:如何改变高度依赖横向竞争者的分布式架构,围绕核心价值链构建「以顾客为中心」的平台式架构,从流程驱动转向数据驱动。

  另外,需要澄清的是,这里的端到端并不是说不需要进行分层优化和模块优化,而是需要找到更合理的架构来打破原有边界,优化分层和模块,以及链接方式。如果说第三时期的专家是管理咨询专家和IT顾问,那么第四时期的专家就是架构师。

  今天企业面临的架构问题,除了传统的技术架构问题,还有数据架构问题,以及和技术和数据相匹配的业务架构问题,同时,企业还需要解决新的商业模型下团队和角色的缺失问题(比如数据科学家),以及如何调整组织架构以适应全新的商业挑战问题。

  如果说过去的架构问题是纸老虎,那么,今天的架构问题就是真老虎,必须要通过各种架构师来从根子上进行优化。

  eBay作为最早成熟的电商平台,需要服务大量碎片化的商家和碎片化的用户,传统的应用开发方式和部署方式存在大量重复建设和资源浪费的问题。为了解决这个问题,eBay摸索建立了5C(5个中心,包括商品中心、会员中心等等)的业务中台架构雏形,围绕BI需要搭建了「数据采集-数据消费」的数据架构。

  后来阿里巴巴的业务中台就脱胎于eBay,淘宝通过五彩石项目复制了5C的方法论,构建了阿里自身的业务中台;支付宝则复制了eBay的BI体系,构建了BI的数据架构,但是这个时候,并没有真正意义上形成数据中台。

  奇点云创始人行在曾经是阿里数据的老兵,完整经历了阿里巴巴从数据仓库到数据中台的发展过程,也是阿里云数加平台(现阿里数据中台Dataworks)创始人。他表示,数据中台并不是凭空长出来的,或者是单纯技术进步的产物,而是经历了「看、用、运营」三个阶段,业务需求驱动了数据中台 One Data 方法论真正成型。

  最初,业务仅仅是希望用数据来看见「业务发生了什么?怎么发生的?」,数据仅仅支撑了各个事业部内部的BI分析需求,但即使是这样,到2012年,阿里巴巴有50%的服务器都不再进行任何事务处理,而仅仅用于数据分析,可见数据分析的规模。

  为了解决海量数据的存储计算问题,阿里巴巴在2009年就开启了云计算的道路,并且以阿里小贷为起点开始了云计算的摸索。然而,回头去看,阿里小贷不仅仅是阿里云的起点,也是数据中台的起点。

  行在曾经多次在不同场合表述,阿里小贷项目通过数据实现了低风险高效率的小微金融,让公司决策层达成共识:数据是生产要素,「基于数据才能够产生阿里小贷这样的创新业务;也只有在数据集中融合的基础上,才能够产生这种业务。」

  以此为基础,2012年,马云正式提出了「一切数据业务化,一切业务数据化」的数字化转型理念,成为了阿里数据整合的开端。

  对当时的阿里巴巴而言,通过构建业务中台,初步重构了面向消费者价值链的平台架构,在后台形成了业务模式复用的能力,但是,在数据上,每个消费者仍然归属于各自的平台,并没有形成统一的消费者视角,平台对消费者也缺乏统一认知。

  就在同一年,行在领衔TCIF(淘宝消费者工厂)项目,第一次通过 One ID 打通了阿里系所有平台的数据,并在此基础上建立了3000个通用标签。换句话说,不管消费者出现在阿里系哪个平台上,平台都能识别并还原消费者的特征,真正意义上建立了人群定向的能力——围绕消费者实现端到端的精准服务。

  2015年,数据中台的 One Data 方法论成型,在此基础上,行在创立了阿里云数加,构建了现在的阿里数据中台Dataworks,第一次公开向客户提供数据中台产品和服务。

  第一,围绕数据的「生产-消费」价值链条,传统企业的业务架构和数据架构都有极大的优化空间,数据的市场非常广大;

  第二,数据对业务有价值,但数据能力要适配业务的需求,不能过于超前,「大炮打蚊子」的技术自嗨要不得,要围绕业务需求来建设数据能力。

  怀抱着让「实体商家都拥有淘宝一样的数据运营能力」的愿景,2016年底,行在离开了阿里,和团队一起开创了奇点云,一家通过提供数据中台服务帮助企业数字化转型的技术公司。

  奇点云的独特之处在于,当其他同类公司都把中台赛道当成横向的替代竞争领域时,奇点云从一开始就是奔着帮助企业「纵向优化」建立一方数据价值链的思路,构建了整个端到端的交付能力。

  如果我们打开数据「生产-消费」的链条,我们可以把整个数据价值链分成数据生产、数据采集、数据存储、数据计算、数据治理和管理、数据服务、数据应用、数据智能应用等几个大的模块,简化而言就是「存通用」三个主要环节。

  奇点云发现,传统企业在过去的数字化转型过程中,仍然采取横向优化的思路,因此,尽管在三个环节上都有尝试,但因为缺乏对数据价值链的认知,并没有形成「以数据为中心」的纵向优化能力,换句话说,数据应用缺少端到端的业务服务能力。

  – 存:核心是数据有和没有的问题,比如购物中心,因为其二房东的商业模式,线下消费者数据趋近于无,需要先解决消费者数据的生产问题;

  – 通:核心是数据打通和管理体系的缺失问题,比如车企,尽管拥有大量数据,但是受困于数据孤岛和缺少数据治理,每年生产大量数据但缺少直接可用的数据资产;

  – 用:核心是IT和业务缺少协作机制的问题,传统企业的IT和业务部门常常处于分割的立场,IT投入和业务需求常出现脱节的情况,比如在某公司,IT部门做了一万多个融合标签,但是业务部门实际只使用了其中的三四个标签,差距之大令人咋舌。

  所以,从一开始,奇点云就认为数据中台应该也必须是一个业务概念,必须要从业务需求出发,「以用带通,以通促用」来赋能企业建设数据「生产-消费」的完整价值链,让企业真正拥有纵向优化的平台能力。

  「以用带通,以通促用」的意思是,根据企业的业务目标和业务需求,来确定应该采集和存储哪些数据,打通和治理哪些数据,分析和应用哪些数据,并在这个过程中形成统一的数据资产,促进企业数据能力的不断服用和拓展,建设企业一方端到端的数据服务能力。

  行在认为,只有这样,数据中台才是一个完整的概念,「为了上中台而上中台」的项目因为不能产生业务可感知的价值,失败概率极大。

  从纵向优化的角度,数据中台真正要解决的是企业所处的价值链各个环节是否能够统一视角,面向顾客,面向供应商和合作伙伴,乃至面向商品,并具备可复用的数据服务能力。

  这注定需要在行业内的沉淀和积累,如果只是抱着横向竞争的思路,不断地跨行业去做中台交付,只能沉淀交付经验,并不能真正帮助企业实现纵向优化。因此。奇点云首先选择了泛零售和政府企业服务领域作为核心领域来验证自己端到端的服务体系。

  四年过去,端到端的独家服务思路也结出了丰硕成果。在泛零售领域,奇点云服务了500+核心客户,其中每个细分领域的TOP客户50%以上都是奇点云的客户,包括LVMH、lululemon这样的国际大牌都陆陆续续加入了品牌墙。迄今为止,奇点云交付了200+的数据中台项目,零交付失败。

  过去几年来,火山石董事总经理刘昊一直都在看消费和零售领域的互联网创新项目,最近一两年,他发现,国内的消费零售走得非常快,积累了大量的数据,需要在IT化和互联网化的基础上有更大的体系化突破能力。

  刘昊认为,过去的纯业务创新,更关注从0到1的突破,但是今天面临线上电商化、线下数字化的现状,需要线上线下一起推进,共同关注系统层面的效率最大化——公司上下「万众一心办大事」在体系建设上最有效率,也更能帮助业务创新实现体系化突破。

  在关注泛零售行业赋能的数据应用过程中,刘昊观察并形成了三个数据的基本认知:

  1. 数据应用的pattern(模型)是有价值的,可以通过标杆客户训练认知和模型,不断地复用,来扩大企业的边际优势;

  2. 数据应用需要形成良性循环,从定义客户(可复用价值),到创造价值,再到正向促进客户持续使用数据验证价值;

  3. 数据的企业服务要有可被量化的实际结果:投入多少成本,多久能收回成本,交付的结果能给客户带来多大提升。

  随着数据价值链上下摸索的过程中,数据中台自然而然地进入了刘昊的视野,在看了一圈项目之后,刘昊发现,奇点云最符合他的三个认知:

  第一,奇点云想清楚了怎么从客户经验中积累和复用方法论的问题,整体思考路径比较统一,有所为有所不为;

  第二,数据应用正在形成正向循环,从发掘数据持续积累的价值走向封装成标准应用的价值;

  第三,给客户创造的价值可被验证,客户能说清楚带来了什么短期效果和长期效果。更重要的是,他看到了数据网络效应的增长前景。「数据应用本身带着一定的网络效应,」刘昊说,「当数据不断地在不同的单点上创造价值,越到后面,网络效应就越强……数据打通层面能不能形成网络效应决定了赛道什么时候爆发。」

  网络效应众所周知描述了网络带来的某种飞轮效应,那么,什么是数据网络效应呢?让我们用一张图来说明:

  简单来说,数据网络效应并不是类似梅特卡夫效应这样的节点扩张效应,而是建立在数据解决业务问题能力上形成的正向循环飞轮。

  首先,最难的部分是如何通过冷启动形成内圈闭环,也就是通过使用旧的数据分析和解决业务问题,并收集新的(改善)数据来解决新的业务问题,不断循环往复形成迭代机制。这个过程并不能产生网络效应,但这是网络效应的基础;

  其次,要从数据「生产-消费」价值链的自动化开始,逐步走向智能化的数据应用模型复用。举个例子,数据分析师在分析数据的时候,分成数据采集、数据清洗、数据透视和分析、数据可视化等几个步骤,大部分传统企业的数据分析师,有80%的精力都花在数据采集、数据清洗和数据可视化上,而真正应该投入精力去做的数据透视和分析,却通常只占了他们10%-20%的精力和时间。

  奇点云在给某集团提供数据服务的过程中,通过数据自动化采集、数据治理等手段,实现了秒级出具单据和T+1的报表产出,每天上午8点经理上班后就能看到前一天的业务结果,而原本所需要的时间分别为30分钟和一周,仅此一项,就给集团贡献了每年至少500万的费用节省。

  最后,数据应用最终一定指向智能应用,也就是让人做人应该做的事情,机器做机器该做的事情,来减少人在高频重复场景下的投入,降低人的使用难度,只有智能应用才真正驱动飞轮成型。

  使用难度的降低,一方面会带来使用数据解决问题能力的极大提升,用数据解决更多业务问题,另一方面也会带来使用规模的提升,哪怕是一线的普通员工,也可以使用数据进行自我决策,也可以根据数据推荐结果来判断如何服务当面的顾客。这两者都会带来更多的新数据来训练智能应用,从而真正带动飞轮的增长,产生数据网络效应。

  德同资本合伙人陆宏宇一直关注新消费和TMT领域,从2016年起就关注大数据的进展,包括阿里云数加平台的最新实践,但当时他认为大数据发展仍在早中期阶段 ,信息化才是企业服务的第一步,数据中台需要更多观察。

  直到近一两年,「数字化的渗透率提升、云计算的渗透率升高、企业客户对智能化意识的提升,大数据+AI的机会才真正到来」,特别对于零售客户,疫情也推动了其数智化转型进程。陆宏宇认为,只有沉淀行业经验、规范交付体系、建立合作生态、打造品牌势能,借助渠道和快速交付能力,数据中台企业才能够实现更快速的增长。奇点云坚持初心,追求以客户成功为基础的稳健增长,已逐步构建起了自身的能力圈和护城河。

  2020年9月,德同资本和火山石一起领投了年初以来一直盈利的奇点云。在当年年末,奇点云还获字节跳动领投B2轮,老股东IDG资本跟投。

  最近,他服务了一个企业客户,客户主营业务属于跨国业务,采用了混合云架构(私有云+国内公有云+国外公有云),混合云的计算性能低下,寻求奇点云的帮助。

  地雷诊断后发现,最直接的原因是企业的灾备策略和云的灾备策略冲突了。举例来说,该客户的同一份数据,公有云已经进行了「一备三」的灾备,而企业自身因为混合云架构也进行了「一备三」的灾备,里外里就是九份灾备。也就是说,客户业务的一次数据计算,理论上只应该涉及三份备份,但实际上却涉及了九份备份,原本按照三份备份设计的算力自然就不够用了。

  随着越来越多的企业上云,会出现更多跨平台跨国界的案例,企业上云可能不只有一朵云,而是两朵甚至更多云。

  跨平台多云,最大的麻烦在于数据应用的开发、部署和迁移。地雷表示,现在通用的数据架构并没有充分运用云的特性,仍然属于「上云」的范畴,带来的麻烦在于:

  第一,数据应用的开发、部署对云环境有依赖性,同一个需求,阿里云开发的数据应用和华为云开发的数据应用并不相同,而且数据应用不能在多云多领域间方便的迁移;

  第二,弹性计算扩充资源的时候带来极大的资源浪费,因为现在云计算的售卖方式是把存储节点和计算节点打包成一个虚拟机,如果企业算力不足,弹性扩充的时候购买的是一台台虚拟机,也就是说,企业如果需要购买30个计算节点,那么,也会被迫购买30个存储节点,这额外的30个存储节点就属于无效购买。

  在地雷看来,过去基于数据中台的纵向优化方案,更多的应该称为「数据中台上云」,也即通过业务的数据架构优化,来解决数据能力复用和数据可信的问题;而未来的纵向优化方案,则可以称为「云上数据中台」,即完全基于云计算的特性来设计数据架构,从存储和计算分离开始,从业务、技术、组织三方来共同开展纵向优化,实现企业端到端的成本管控和能力输出。

  基于云计算的特性,在技术领域被称为「云原生」,可以充分释放云的红利:通过容器化来实现数据应用在多云多领域间的方便迁移,解决异构环境的部署一致性问题、资源标准化问题,进一步降低了数据的使用门槛,为自动化和智能化服务打下良好的基础;通过存储和计算分离,充分利用云的特性,增加数据中台弹性伸缩能力的同时,帮助客户降低存储成本到原来的1/3。

  文章出处:【微信号:qianhaoapp,微信公众号:创伙伴】欢迎添加关注!文章转载请注明出处。

  我想用labview采集泵车控制器的数据(通过CAN总线传输),然后进行算法处理保存,并且通过波形图像和布尔开关表示出来,以下是...

  现阶段随着各大企业分公司数量的不断扩增,管理体系也逐渐变得多层次化、多元化,这意味着对其金融资产的集....

  “踏破乡途窥云端,步入凌霄摘星辰”,诗人曾用这样的辞藻抒发宏图壮志。在数字化浪潮汹涌的当下,企业数据....

  教程基于沁恒32位通用增强型RISC-V架构MCU CH32V103,力争全面分析CH32V103的每个外设功能及使用方法,手把手教大...

  如何去实现一种51单片机的数据区传送程序? 如何去编写51单片机的数据区传送程序代码?...

  VPN(虚拟专用网络))是传统因特网用户熟悉的缩写。一开始,VPN被用于企业内的安全连接网络。目前,....

  在社会发展过程中,经济和环境是一体两面、相互促进的,发展经济和保护环境是统一的,而不是对立的。国家在....

  云计算可以分为两种含义来概括,一种是狭义 ,另一种是广义。狭义云计算是指IT基础设施的交付和使用模式....

  目录标题1.前言(闲线.软件代码———OpenMV端4.软件代码———STM32端5.利用PC端测试数据数据是否发送接收正...

  硬盘的外部物理结构是由哪些部分组成的? 硬盘的内部物理结构是由哪些部分组成的? 硬盘存储的逻辑结构是由哪些部分组成的?...

  1.头文件,把reg51.h,reg52.h替换成相应的AVR头文件,如iom16v.h等。2.对C51中的bit,sbit的数据类型进行处理,因为ICCA...

  目录1、cpu处理的数据宽度2、数据总线、cpu处理的数据宽度CPU处理的数据的宽度,参与运算的寄...

  点击“蓝字”关注我们来源 谈数据作者丨石秀峰一、认识数据湖1、初识数据湖Data lake,笔者第一次接触这个概念,是在2014年IB...

  数据湖的定义是什么? 数据湖与数据仓库的区别在哪? 如何去构建数据湖? ...

  2021第二届隐私计算产业与应用论坛于近日在上海圆满收官。作为国内首个聚焦隐私计算领域的年度行业权威....

  云的概念已经深入人心,对于普通的消费端用户,我们经常听到是什么百度云,华为云等各种云盘,还有什么挂着....

  对于在某电商公司10 多万㎡仓储中心里负责IT运维的赵明来说,每年的618、双十一促销季都是一场攻坚....

  一年一度的暑期再次来临,你原本平静的心是不是又开始蠢蠢欲动?《热血三国》《传奇荣耀》《斗破沙城》,只....

  【编者按】这是一篇关于机器学习工具包Scikit-learn的入门级读物。对于程序员来说,机器学习的....

  1、欧柯奇OK-CQ1型太阳能虫情测报灯 太阳能虫情测报灯专为农林虫情测报而研制。在无人监管的情况下....

  智能孢子捕捉仪,可检测随空气流动、传染的病害病原菌孢子及花粉尘粒,主要用于监测病害孢子存量及其扩散动....

  根据外媒的报道消息,全球知名的国际集团亚马逊公司创始人及执行董事长贝索斯于近日已经正式在美国卸任亚马....

  田间小气候监测站的作用及配置: 1、设备配置:田间小气候监测站由气象传感器、气象数据记录仪、电源系统....

  托普云农设计研发供应的手持气象站,该仪器小巧美观便于携带,带有GPS功能及语音播报功能,并且在无人看....

  高性能计算作为计算研究的基础,最初是以国家建立的超算中心服务于国家级科研项目和气象,海洋,生物等科学....

  云计算作为近几年兴起的一项新的互联网技术,为社会的工作方式和商业模式带来了巨大改变。除了我们熟知的阿....

  如今的软件开发行业,服务器端市场基本被 Linux 系统占领了。移动端中的 Android 系统是基....

  QuickPing是一款网络监测工具,支持批量快速ping局域网内IP,网络监控工程实用工具,选择要....

  数字经济已成为社会发展的关键组成部分,以数据为核心的智能化升级惠及千行百业,每一家企业都在试图从中获....

  从 “不知道操作系统,也不会搞操作系统”到“二十年如一日”攻克操作系统技术、市场难关的孔金珠,与 I....

  关键帧是一幅能描述镜头 主要内容的帧。在镜头检测的基础上,针对视频数据中有大量的冗余信息,可以采用提....

  得益于物联网,世界和企业的IT基础设施日益互联。借助物联网,几乎所有设备都可以连接到互联网和其他设备....

  2021 年 2 月 24 日,MIT Technology Review 一年一度的 “十大突破性....

  近日,中国储备粮管理集团有限公司公示了2021年真菌毒素、重金属检测仪入围项目,上海飞测FD-600....

  其中,返回值的类型和位宽是可选项,如果缺省会返回一位寄存器类型数据。Verilog HDL认为函数的....

  HPE以3.74亿美元收购Zerto加速向云原生软件定义数据服务业务转型

  收购加速了 HPE Storage 向云原生软件定义数据服务业务的转型 Zerto 是 350 多家....

  美能达高精度多角度光泽度计MG268A,在每次测量时记录样品的温度数据,以便分析热色效应。其还有一项....

  随着云计算、大数据、AI、移动互联网等新兴IT技术的快速发展,越来越多的传统产业正加速信息化部署,实....

  本文作者:九弓子 前端最讨厌的事:需要阅读同事封装的各种奇怪组件 前端最喜欢的事:分分钟封装一个自定....

  全球领先的无线通信模组供应商广和通与领军IoT云平台涂鸦智能于上海正式签署合作伙伴协议,未来双方将不....

  出于产品测试和质量控制的目的,报表用于记录生产过程中的事件。这些事件,即报警和配方数据,以班次报表的....

  本期上海研强给大家分享的是工控服务器的特点介绍及应用领域,希望看完本篇文章您能对工控服务器有一个全新....

  标识符可以是一组字母、数字、下划线和$符号的组合,且标识符的第一个字符必须是字母或者下划线。另外,标....